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Analytic model for ring pattern formation by bacterial swarmers
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We analyze a model proposed by Medvedev, Kaper, and Kéell MKK mode) for ring formation in
two-dimensional bacterial colonies 8froteus mirabilis We correct the model to formally include a feature
crucial of the ring generation mechanism: a bacterial density threshold to the nonlinear diffusivity of the MKK
model. We numerically integrate the model equations, and observe the logarithmic profiles of the bacterial
densities near the front. These lead us to define a consolidation front distinct from the colony radius. We find
that this consolidation front propagates outward toward the colony radius with a nearly constant velocity. We
then implement the corrected MKK equations in two dimensions and compare our results with biological
experiment. Our numerical results indicate that the two-dimensional corrected MKK model yields smooth
(rather than branchedings, and that colliding colonies merge if grown in phase but not if grown out of phase.
We also introduce a model, based on coupling the MKK model to a nutrient field, for simulating experimen-
tally observed branched rings.
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I. INTRODUCTION process is a longeftypically 30 times longef3] in Vibrio
but only 1.5-2 times longef4] in the branched rings of
Colonies of bacteria growing on a hard surface have beeBacillus), hyperflagellated cell, a swarmer. This process is
observed to produce patterns of concentric rings. These ringBustrated in Fig. 2. Swarmer cells interact with each other
form after inoculation of a bacterial culture in the center of amuch more so than swimmer cells. The flagella of adjacent
Petri dish containing nutrient-enriched agar, and allowing theswarmers become entangled, which locks both cells in the
bacteria to grow. Certain species of bacteria, sucRrageus  same orientation. In this way, groups of swarmers become
mirabilis [1,2], Vibrio parahaemolyticug3], and Bacillus  linked together into rafts of bacteria, all with the same ori-
subtilis [4], have been observed to form these terraced ringntation of their long axis: these rafts move as single units.
patterns during their colonial development under certain conThrough an unidentified mechanism, these rafts of bacteria
ditions. The challenge of modeling the formation of theseexpand the colony radius much more quickly than the com-
ring patterns has stood unsolved for over a cenf@iy posite motions of noninteracting swimmer cells. A primary
These ring patterns form by way of a cyclic lifestyle of goal of modeling these ring patterns is to understand how
differentiation and dedifferentiation for the bacteria. Duringthese swarmers use bacteria-bacteria interactions to move
one stage of this cycle, initially short, relatively nonmotile much more quickly than the swimmers.
bacteria increase in numbers by reproduction without signifi- Recent progress in modeling these bacterial ring patterns
cantly increasing the surface area of the colony. During thénas yielded a framework for further analysis. Esipov and
other stage of the cycle, some subset of the short bacter@hapiro recently proposed a kinetic mo&] incorporating
differentiate into relatively long swarmer cells. Thesea number of biological observations of these systems and
swarmers quickly increase the span of the colony by migratreproducing(in one dimension the bursts of growth ob-
ing outward from the colony edge as they grow. Once thiserved experimentally. Their model explicitly incorporates
swarming phase is complete, the change in bacterial densiggn age distribution as well as a spatial distribution of bacte-
between the previous and newly occupied areas of the colonya. Although a dramatic improvement to the statdPobteus
delineate a macroscopically observable boundary within theing modeling and a very interesting mechanism, the Esipov-
colony in the shape of the ring. Shapiro model was inelegant and difficult to analyze. One
A number of biological observations are associated withdifficulty was that the form in which they incorporated ex-
the phenomenon of bacterial ring formation. Primary amongerimental observations was not amenable to mathematical
these is that the rings form in bursts of growth by the rapidanalysis. Most of these factors were incorporated into the
spreading of differentiated bacteria caldarmersas illus-  functional form of a diffusivity. The resulting diffusivity
trated in colony radius time series plots such as our simulaconsisted of three experimentally motivated factors, includ-
tion results of Fig. b). The bacteria of a species capable ofing the use of a threshold to an additional motility field.
swarming are initially in the form oswimmersrelatively ~ Furthermore, the increase in dimensionality of the system
short rods that swim with one or a few rotating arms calledassociated with the use of a bacterial age distribution hin-
flagella. When the motion of their flagella is inhibited by the dered simulation in the desired two spatial dimensions of the
presence of a highly viscous fluid or a hard substrate, thelate on which the bacteria grow.
swimmers express an additional set of genes that inhibits Both of these problems were solved by Medvedev, Kaper,
septationseparation of mother and daughter cells during celland Kopell’'s reformulation6] of the Esipov-Shapiro model.
division) and(at least inVibrio) codes for a structurally dis- They simplified the model to a system of two partial differ-
tinct type of flagellum[3]. The result of this differentiation ential equations. They did this by averaging over the age
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FIG. 2. Swarming life cycle. Cyclic differentiation-
dedifferentiation life cycle of swarming bacteria. The rate constants
P P B B RPN shown in the figure illustrate the biological significance of the cor-

0 20 40 80 responding terms in the MKK equatiori). The bacteria are di-
Time (units fixed by MKK parameters) vided into two subpopulations: swimmedmith a biomass density
(a) v(x,t) and swarmergwith a biomass density(x,t))]. The swim-
mers divide once they double in size; the swarmers delay division
150 "Colony Front Radius vd. Timé until they grow in length. Each of these subpopulations grows with
i ’ i an exponential growth rate(v), modified by a differentiation of
the short to the long papulation densitwith a rate vv) and a
dedifferentiation of the long to the short densit{@sth a ratenu).
The functional form of these rates is illustrated in Fig. 3.
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desired of the emergence of a spike in the spatial profile of

_ the diffusivity that MKK found numerically and identified

. with the ring formation. It is not clear which of the biological

— details incorporated into the MKK model are required for the

] ring formation. Although MKK analyzed closely related

7 equations in which the biological details were taken out, they

] stopped short of producing a final version of the model in

N I IR B B which only the crucial experimental parameters were kept.
0 20 40 80 80 Each of these issues prevent us from claiming that we under-

Time (units fixed by MKK parameters) stand the formation of bacterial colonial rings.
(b)

FIG. 1. lllustration of the effect on colony radius time series of
varying the swarmer density diffusivity threshold. The swarmer As described above, MKK reformulated the Esipov-
density diffusivity thresholdiy,.sn0f the diffusivity expressiorf2) Shapiro model by averaging over its swarmer age distribu-
is varied, and the colony radius time series plotiel. A large-  tion. They maintain Esipov and Shapiro’s patrtitioning of the
period swarm plus consolidation cycle, due to a relatively smallpacteria into two subpopulations: a swimmer biomass den-
Urest= 10719 in Eq. (2). We use this value ofiyesn €lsewhere  sjty y(x,t), and a swarmer biomass density(x,t). The
except where notedb) A smaller-period swarm plus consolidation resylting system of equations is as follows:
cycle, due to a largemeg= 10 2.

Front Radius (lattice spacings)
o
=}

Review of Medvedev-Kaper-Kopell model

u (X, t)=vo (X, t)+ (a@—p)u(x,t) + (D(U,v)uy(X,t))y,

distribution of the Esipov-Shapiro model, and shifting the
biological details of that model away from the functional vi(X,t) = (a—v)v(X,t) + pu(x,t), (1)
form of the diffusivity and into the functional forms of three
separate kinetic coefficients. The result was a model that not
only was more amenable to numerical simulation in two di-
mensions, but one for which closely related models could be
analyzed mathematically. The first of these equations gives the time rate of change of

A number of questions remained unanswered, howevethe swarmer biomass density as the sum of an exponential
First of all, it remains to be explicity shown that the growth term @u), the loss due to dedifferentiation of
Medvedev-Kaper-Kopell(MKK) model indeed produces swarmers to swimmers—uu), and a diffusive flux to
rings in two dimensions. Their analysis, as with Esipov andmodel the movement of swarmers. We will explore the non-
Shapiro’s, was entirely one dimensional. Second, it would bédinear diffusivity they use below. The second of these equa-
interesting to see whether the MKK model reproduces theions gives the corresponding time rate of change of the non-
lack of entrainment of rings sometimes observed in collidingmotile swimmer biomass density as the sum of an
Proteuscolonies. Furthermore, a physical understanding issxponential growth termdv) corresponding to swimmer

u
D(U,U):Dom.
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FIG. 3. Cartoon illustration of the functional dependence of the
rate coefficients in the Medvedev-Kaper-Kopell model. Each varies
with swimmer densityv (x,t). To aid mathematical analysis, the
authors of Ref[6] gave the transitions widths @f. Each of these
rates drop to zero above an upper swimmer density threghdia
addition, the differentiation rate(v) receives a lower cutoff ¢,
below which the differentiation rate goes to zero. In each case, the
versions of the coefficients we used in our numerical integrations
below had the transition regions implemented with straight line seg- | o Meximum /g/l;fagztio %
ments: unless otherwise noted, we used12.0 andv =16.0, in ~— Minimum U/V Ratio
accordance with the parameters used in IR&f. and we choser

ia

<!

warmer/Swimmer densities)
o

|
[9)]

Log, (8

|
—
o

=0.1. If (@) The total biomass growth rate(v). (b) The dediffer- 0 20 40 80 80
entiation rateu(v), the rate at which swarmers dedifferentiate to Time (MKK time units)

swimmers. (c) The differentiation ratev(v), the rate at which

swimmers differentiate to swarmers. FIG. 4. Time series of representative values of the swarmer to

o . o . swimmer ratiou/v. Representative values of the swarmer to swim-
cell division, a loss due to differentiation of swimmers to mer ratiou/v are plotted as a function of time, for the MKK model
swarmers ¢vv), and a gain due to dedifferentiation of equation(1), as amended by Eq2), with the same parameters as
swarmers to swimmersuu). With the third equation, MKK  reported above. Plotted are logarithnizase 10 values of the
took for the diffusivity a weighted fraction of biomass in the maximum, median, and minimum values of the swarmer to swim-
swarmers, with the swimmers weighted with a factorkof mer ratio,u/v, within the consolidation region. For this purpose,
>1 to account for the enhanced motility of the swarmers. the consolidation region is approximated as that region between an

This functional form for the nonlinear diffusivity is bio- inner radius, whereu=uc,ns,, and an outer radius, where
logically reasonable. If we interpr&tto be the average ratio = Umresn- It can be seen that the differences between the maximum,
of |Ong (Swarme)' to Short(swimmeb bacterial |ength5, the median, and minimum values of the ratitv at any given time are
given weighted fraction is the fraction of bacterial populationinsignificant compared to the differences in these values introduced
memberdi.e., entire cellsthat are swarmers, rather than the Py time evolution. As a result, the time series of jg/v) values

fractionu/(u+v) of biomass concentrated in swarmers. Thistakes the form of a well-defined sawtooth curve, with nearly verti-

functional form also has properties consistent with experi-cal linear rises and relatively shallow linear declines. These linear
ises and falls on this log plot correspond to exponential increases

ment. First, motility continues despite decreasing swarme} o .
density during expansion. The form of the MKK diffusivity and decreases of the'v ratio itself. The fast upward rise occurs

o . . _ .. during the same time interval as the swarming phase, and the rela-
accounts for this, in that it remains finite as swarmer density. ' N
vely slow downward fall occurs during the same time interval as

(u) decreases. Se(.:ond’ the swqrm_er der!SIty does not drOpt e consolidation phase. It should be noted that this plot shows that
zero when swarming St_OpS'_Th'_S 1S agan accounted for b%e ratiou/v is small(<1) during consolidation, in agreement with
the M_KK d|ffu5|y|ty: ) this _d|_ffu5|V|ty can aPProaCh Z€10  the mid-consolidation phase snapshot of the profiles shown in Figs.
(stopping swarmingwith a finite swarmer density as long as 7p) and 7c). We have analytically calculatdd] the slope of the

the ratio of swimmer to swarmer densities,u, diverges.  gownward segments of this plot and found it to-bg:/In 0, which
Finally, the swarming motility decreases with increasingagrees with the plots presented here.

swimmer density. This is consistent with the fact that the

MKK diffusivity approaches zero for large swimmer density the other two coefficients do not alter the behavior of the
v. model.

The biological details that Esipov and Shapiro incorpo- In addition, the differentiation rate(v), the rate at which
rated into the nonlinear diffusivity, MKK incorporated into swimmers differentiate to swarmers, has a lower cutoff of
the functional forms of their rate coefficients. These are thébelow which the differentiation rate goes to zero. This cor-
total biomass growth rate(v), the dedifferentiation rate responds to an experimentally observed initial latency in
m(v) of swarmers back to swimmers, and the differentiationswarmer cell production when a colony first starts growing
rate v(v) of swimmers to swarmers. These are illustrated infrom an inoculum. Until the density of swimmers reaches a
Fig. 3. The upper cutoffs on each of these coefficients wer¢hreshold, swarmers do not appear. In addition, the upper
intended to halt all bacterial growth above a maximal swim-cutoffs, in combination with the lower cutoff on the differ-
mer densityo. This effect is in accordance with the experi- entiation rate, allow the swarmer density to approach zero
mental observation that bacterial growth saturates, no mattehrough diffusion(without being replaced by newly formed
how much food is present. However, we have shown elsebiomas$. This allows the diffusivity to approach zero and
where[7] that only the upper cutoff on the overall growth thus slow the expansion of the colony.
rate,a(v), is required for this purpose; the upper cutoffs on  MKK numerically integrated their equatiof€qs. (1)],
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FIG. 5. Time series of the radii of the entire colony and of the consolidation front. These are results from numerical integration of the
MKK equations(1), as amended by Eq. 2. Parameters used Wgre25, «=0.7, u=v=0.6,k=5,07=12,7 = 16, anduges= 10" Error
bars are are not presented, as the radius is determined as the lattice site where the averaged radial profile dips below some threshold. The
initial condition we use in this and other figures we borrow from the code of MKK. The swimmer and swarmer densities are constant within
a radius of five lattice units of the colony center, and zero otherwise. The swimmer density is set to a value of 11.5 within this region, and
the swarmer density to 9.0. Although this differs from biologically relevant initial conditions, in which the swarmers start at zero every-
where, numerical resultglata not shownindicate that the colony radius does not increase significantly until the swarmer density is built up.
(@) The colony front is defined as the spatial location at which the swarmeprpfile first dips belowu,.s= 10 1. Note that growth of
the colony front occurs in bursts, in agreement with both experimental and previous numerical (i@sths. consolidation front is defined
(somewhat arbitrarilyas the spatial location at which the swarmey profile first dips below the threshold af,yne= 10" 1. This value was
chosen because it was near the inner edge of the exponentially decaying part of the swarmer density distributiotonf Fig. focus of
attention is not the series of bumps in this plot, but rather the linearity of the majority of the plot. These linear segments indicate that
consolidation front propagation occurs at a constant velocity. The slope of the linear portions of thiglatrige the observed consolidation
front velocity) is approximately 1.93 0.05 lattice units per MKK time unitic) The same consolidation front time series aghn but with
a largeru o= 1.0. The deviations from linearity that appearedbpare barely recognizable, indicating that the consolidation front appears
to propagate linearly with time even during swarming.

and identified a significant physical insight to the mechanisnfive cells thick, whereas just behind the growing front, the

of ring formation. The striking thing they found was the population was only a single cell thick. MKK also produced

presence of a spike in the profile of the diffusivity that a colony radius vs time plot demonstrating that their model
formed at the colony front just before the swarming phaseyielded growth that was not just cyclic, but indeed occurred
began. According to Eq1), this implies a spike in swarmer in bursts. With the MKK model in hand, we are ready to

cell density just before swarming starts. In support of this,explore some of the issues we raised in Sec. I: rings in two
Rauprichet al.[1] observed that the leading edges of swarm-dimensions, entrainment of colliding rings, identification of

ing Proteuscolonies were composed of populations four tocrucial biological details.
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II. NUMERICAL STUDIES OF MKK MODEL 100 — T ———
RJing Period vs. ]Log Threshold
A. Correcting the MKK model

We first reproduced the numerical observations of MKK 80

similar to our Fig. 1b). We determined that they used a
significant but undocumented modification to the analytic
model they presented: they implemented a lower threshold
on the swarmer density, below which they set it to zero. We
determined that this threshold was crucial to the ring genera-
tion mechanism.

This swarmer density diffusivity threshold is biologically
reasonable: it accounts for the physical discreteness of the
distinct bacteria. If the swarmer density goes below some
level corresponding to a single bacterial layer, for example,
the corresponding decrease in bacteria-bacteria interactions ol v
would reduce the enhanced motility due to bacterial en- -20 -10
tanglement. It is thus a valid biological feature that the Log, (swarmer Diffusivity Threshold)
swarmer density diffusivity should approach zero for as the
swarmer density approaches some finite but small threshold
value from above. 200 T T T L

We use an alternating-direction-implicit method in con- Ring Width vs. Log Threshold
junction with a forward-time, centered spacing technique of
finite differencing in our numerical integration of the MKK
equations. In Fig. 4 we present our numerical results for the
time evolution of the swarmer to swimmer ratidv in the
region near the fronfwhereu andv approach zeno We see
there that the ratia/v in the consolidation region decays
exponentially(with a decay rates [7]) for the entire duration
of the consolidation phase. This observation provides a quan-
titative constant to the behavior of the swarm-consolidation
cycle (see Fig. 1

The largeu/v ratio observed in Fig. 4 during swarming
can be understood as follows. Recall that the swarmers
are motile, while the swimmersy§ are immotile and must ot v
wait for the swarmers to populate an area before the swim- -20 -10
mer density can build up. During the swarming phase, i.e., Log, (Swarmer Diffusivity Threshold)
before the swimmer «) density has caught up to the (b)
swarmer (1) density in newly populated areas, the raii@

is therefore large. Equatiof®) then indicates that, very near ~ FIG. 6. lllustration of exponential decay of ring period and
the front (i.e., as bothu and v approach zenp D(u,v) width with the swarmer density diffusivity threshold. The swarmer

—Dg(u/€)—0 rather than the correct form db(u,v) (éen?iz'?/ .diﬁus.iv(ijty th;etshhmdj‘hres“m tg.?ﬁ diﬁUSi\gtY eXpre.SséoniS
—Dg(u/u)=Dg. The specific form in which MKK handled g.1<) 1s varied, anc the corresponditgveraggring period an

this limit of the expression for the diffusivity thus has the Vidth is observed. Shown a(@) the ring period, andb) the ring

i . width, both as functions of lgg(uy,esp- FOr both of these plots, it
hgretgfpre undocumented effect of artificially decreasing th(:éam be seen that, consistent with the rings illustrated in the colony
diffusivity to zero (rather than tdDg) near the front.

radius time series plots of Fig. 1, the ring period and width both

We found that this detail was crucial to the abrupt burstsyecrease exponentially with the swarmer density diffusivity thresh-
of growth shown in Fig. (b). We therefore explicitly build it 54

into the model with the following expression for the diffu-
sivity, in which diffusivity is explicitly set to zero when the
swarmer(u) density falls below some thresholg, e

60

40

20

Average Ring Period (MKK time units)

o

®
&

150

100

50

Average Ring Width (lattice spacings)
T T T T | T T T T | T T T T | T T T T
1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1

o

B. Effect of the swarmer density diffusivity threshold

u We illustrate in Figs. 1 and 6 the effect of varying the
_ _ swarmer density thresholg;,.s»0f the diffusivity expression
D(U,0) =D @ (U= Utnrest)- @ Eq. (2). In Fig. 5 we see the qualitative effect on the
colony radius time series of increasing the swarmer density
diffusivity thresholduy,sn Several orders of magnitude. We
We will see below that the value of this thresholg,esp, examine the effects Oflyesn in terms of ring period and
directly controls the period of the swarm plus consolidationwidth. A ring here refers to that part of colony growth that
cycle. We proceed using the corrected MKK model, consistoccurs during a swarm plus consolidation cyéng period
ing of Egs.(1) as modified by Eq(2). refers to the amount of time between the abrupt initiations of
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FIG. 7. lllustration of the exponential decay of bacterial densities in the consolidation region in the MKK model. Shown are the
exponential decay of bacterial densities resulting from the MKK mfiggl(1)] as amended by the second equation bdfaw((a) and(b))]
and Eq.(2) [for (c)]. Shown are logarithmi¢base 1 plots of swarmer ) and swimmer ¢) density profiles andlin (c)] their ratio in
midconsolidation phase. Ift), the region(near the origin over which theu/v ratio undergoes a steep decay propagates outward during
consolidation until it reaches the corresponding peak at the colony radius: this leads to formation of the diffusivity spike observgglin Ref.
and the induction of swarming. In each figure, error bars are based on scatter in the plotted quantities and are below the resolution of the plot.
MKK implemented the nonlinear diffusivity in their model through the combinations

D(u,v)=D, ; U=UO(U—Uspres) s

u
tko+e
with € a small constante=10"*. For (a) and(b), we implement a slight variant of these modifications

u
u+ko+ e ®(u_uthresi)-

Parameters used wef2,=25, «=0.7, u=v=0.6, k=5, v=12, 7=16, anduyes=10"% (a) The full profiles: the top curve is the
swimmer @) density; the lower curve is the swarmer)(density. We maintain the full profile in our code, rather than justxt&® region,

in anticipation of integrating the corrected MKK equations in two dimensidbs.The profiles near the front, in what we call the
consolidation region. Note that the spatial decay rates of both swimmers and swarmers are the same within much of the consolidation region.
(c) The ratio of the profiles near the front. The steep increagthimlogarithm of this value at the colony front remains at the front during
consolidation, and underlies the small precursors to the diffusivity spike observed by MKK. This precursor remains stationary at the front
while the consolidation front propagates outward. When the consolidation front catches up to the colony front, the previously observed
diffusivity spike appears, and initiates a new swarming phase. Note that in this midconsolidation phase snapshot of the ratio profile, the value
of the ratio is<1 throughout the consolidation region.

D(U U) DO
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growth defining the start of the swarming phases at the be-
ginning of the current and the succeeding ring. Similarly,

ring width refers to the distance between the colony radius at
these two times. With this terminology, Fig. 1 demonstrates
the qualitative observation that ring period and ring width

both decrease with an increaseufjesn.

In Fig. 6, we quantify this decrease of ring period
and width with increases iy, .5, There we plot ring period
and ring width as a function of Qg Uiesn. We see
that ring period and width both decrease exponentially
with the swarmer density diffusivity threshold. This can
be interpreted in terms of observations we have made above.

o

| Swarmer Profile |

Region Inside Consoclidation Front E

yﬂ(umts fixed b'& MKK constan&s)
©n =Y

C. Effect of kinetic coefficient cutoffs

The upper thresholdg on the differentiation rate/(v),
the dedifferentiation rate.(v), and the growth rater(v), o . s0 100 150
collectively serve to prevent the bacterial densities from in- x (lattice units, origin at center of colony)
creasing without bound. As a simplification, we verified that
we could achieve the same effect with the upper threshold
only on the growth rateg(v). For consistency, however, we
do not use this simplification throughout.

Y
=3

Swarmer densit,

—_—
i)
~

kammer Profile
Region Inside Consolidation Fromt

—
@

D. Observation of rings in the colony interior

If the MKK model is to be used to model experimentally
observed bacterial rings, it must yield not only the bursts of
growth illustrated in Fig. (b), but also latent effects of those
bursts of growth in the form of rings in the bacterial density
profiles within the colony, away from the front. Plots illus-
trating the amplitude of the rings in the radial bacterial den-
sity distribution relative to the background bacterial density
do not appear to be available in the literature. This is prob-
ably because experimenters view the rings by scattering light
off the colony. This technique certainly locates the position ol
of the rings, but it does not yield an estimate of their relative 0 50 100 150
bacterial density from the height of the rings above the x (lattice units, origin at center of colony)
colony surface. However, microscopic observatitmsRau- (b)

Colony e, he bacteril densites are so smal tht 1o ag: F13:: Macroscopi emnantsinthe bacerialdensy prficso
proximation of bacterial dynamics near the edge with con- . 9 g. ensity proes are

plotted on a linear scale for the interior of the colony, which in-

tinuous differential equations is questionable. For eX‘Fjlmpk':‘ttludes the entire colony except for the consolidation region: these

they observe_ 4-5 bacte.rlal Igygrs at the propagating fronE)Iots thus include the entire domain of the colony. Parameters used
and only a single layer just inside the front. We have notyere as in previous figures. The features in these plots illustrate the
found published data indicating the corresponding number gfg|atively small details in the structure of these profiles. The profiles
bacterial layers at the location of the rings far from thegre piotted at the same midconsolidation phase time at which pre-
colony edge. vious profile plots were madega) The swarmer density profile
Despite this lack of quantitative biological experimental within the colony interior. Note the presence of a small peaith
data, we can still look for the presence in the MKK model of relative magnitudesu/u=0(10"2)] in the regionx=80—120 lat-
any rings at all left in the bacterial distribution far from the tice spacings corresponding to the burst of growth that at roughly
colony front. Figure 7a) shows that if there are any such t=45MKK time units that appears in Fig(&. (b) The swimmer
rings left in the profile, they are not large compared to thedensity profile within the colony interior. Note that this profile is
background density. This leads us to search harder for angonstant in the interior; this constant is the upper threstigldn

...
[3,]
|
|

[y
o

Swimmer density (units fixed by MKK constants)

evidence of rings in the profiles. on the MKK coefficientd(illustrated in Fig. 3.
In Fig. 9, we make a color plot of the two-dimensional
swarmer bacterial density distribution resulting from the cor-  |;;. EXTENSION OF MKK TO TWO DIMENSIONS

rected MKK equations in two dimensions. The rings evident

there in the colony interior allow us to use the MKK model ~ Recall that one of our original goals was to model the
to probe two-dimensional experimental observations of théwo-dimensional2D) ring patterns observed in the real bac-
rings, such those of colliding colonies and of branched ringsterial systems. To this end, we now run two-dimensional
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FIG. 9. (Color Color map illustrating the magnitude of the swarmer bacterial density gradient. A color plot of the logérében1)
of the magnitude of the bacterial density gradient, normalized to the local depsityEq. 3. The results presented here correspond to a
simulation run with swarmer diffusivity thresholg),.s= 10 2. Note that the colony perimeter is smooth, not branched. Note also that the
rings in this figure correspond to local extrema of the respective bacterial densities: they are where the peaks and troughs are in the bacterial
distribution, rather than where the edges of the rings are.

versions of our simulation to determine whether rings aresity ratio in the consolidation front decreases exponentially
still formed and to determine whether the MKK model pro- except during the onset of swarming.
duces branching patterns in two dimensions. Now that we know the MKK model produces rings in two
We plot the magnitude of the gradient of the bacterialdimensions, the next question is, what do these rings look
densities to view the ring remnants on the colony interiorlike? Although the(root mean squaredcolony radius(as
Because the rings only leave relatively small artifacts in thedefined with a swarmer thresholgh.sy expand outward in
bacterial densities on the interior of the colofas in Sec. bursts of swarming and consolidation, what is the shape of
IID), we cannot view these features directly with a contourtN® Propagating front? Is it smooth, corresponding to the pat-

map of the bacterial density. We therefore calculate thd€'nS observed irProteus or branched, corresponding to

above mentioned gradient magnitude, normalize it to the lotN°S€ observed iBacillus? .y
To answer these questions, we need a method of viewing

cal bacterial density, and plot its logariththase 10. We . . . S .

. - . ; I the full, two dimensional bacterial density distributions in the

'ilf(it)rate typical results of this technique in Figs.(d1and simulated colonies. Figure 8 illustrates that, at least for the
: simulation parameters we are using, the relative amplitude of

the rings left in the colony interior is only of the order of 1%

of the peak amplitudgWe will discuss this quantity later, in

] ) Sec. IlID) A simple contour plot would therefore fail to

We first verify (results not shownthat the MKK model jjjustrate the ring remnants on the colony interior.

produces the same type of ring formation we found in the we therefore implement a different method of visualizing

one dimensional version of the simulation. The colony frontthe ring remnants. We calculate the radial gradient of the

radius continues to propagate outward in bursts, a consoliddacterial densities: the spatial gradient in the direction radi-

tion front still exists and propagates outward linearly exceptally outward from the colony center. We then normalize to

at the onset of swarming, and the swarmer to swimmer derthe local field value. Finally, we plot the resulting quantity

A. Visualizing the 2D structure of the rings
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FIG. 10. (Color) Color map illustrating the magnitude of the gradient of the swarmer bacterial density for two ring colonies grown in
phase. A color plot of the logarithrtbase 10 of the magnitude of the gradient of the swarmer bacterial density, as in Fig. 9. The two
colonies are grown in phase: both the bottom-left and bottom-right colonies start growtirdaf he initial conditions of each of these
colonies are identical: they each start in the midswarming phase. The gradient magnitude of the swarmer density ist stR. dthis
plot demonstrates that the two colonies have merged both at the periphery and deep in the colony interior.

JL(aulax)(x,y, ) P+ (aulay)(x,y,) ]2 For an in-phase diagram, we initiate growth in the two
, colonies at the same time and with the same initial condi-
u(x.y) tions. For an out-of-phase diagram, we initiate the growth in
3 the bottom-left colony in the midswarming phase, and we
initiate that in the bottom-right colony in the same mid-
with a color scale. We note from the two-dimensional simu-swarming state only after the first colony has entered mid-
lation with results in Fig. 9 that the rings are smooth ratherconsolidation phase(We typically initiated the second
than branched. colony att=7.5 MKK time units) We illustrate the result of
the in-phase experiment in Fig. 10, and that for the out-of-
phase experiment in Fig. 11.

We see in the case for which the colonies are grown in
The next question we address is, do the rings from twghase(Fig. 11), that the two colonies have clearly merged
separate colonies merge or remain distinct? Biological obseioth at the periphery and far behind the propagating front.
vations indicate that the rings merge if the colonies are inThis is consistent with the experimental observation that in-

phaseli.e., both in the same growth phasewarming or phase colonies merge, a process called entrainment.

consolidation], and that they remain distinct if the colonies  On the other hand, we see, in the out-of-phase d&sg,

are out of phase. 10), that the two colonies have clearly not merged at the
Here we simulate two colonies with their growth phasesperiphery, and we see less clearly that they do not appear to

either in phase or out of phase. We grow one colony in thénave merged far behind the propagating front. This is con-

bottom-left corner of the simulation region, and one in thesistent with the experimental observation that out-of-phase

bottom-right corner. These colonial positions allow us tocolonies do not merge.

produce pictures of colliding colonies computationally effi- It thus appears that the MKK model predicts that ring

ciently. colonies grown in phase merge and those grown out of phase

n=10g;9

B. Experiments with colliding colonies
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FIG. 11. (Color) Color map illustrating the magnitude of the gradient of the bacterial densities for two ring colonies grown out of phase.
A color plot of the logarithmbase 10 of the magnitude of the gradient of the bacterial densities, as in Fig. 9. The two colonies are grown
out of phase: in each figure, the bottom-left colony starts growing-&, and the bottom-right one &t 7.5. The initial conditions of each
of these colonies are identical: they each start in the midswarming phase. The time delay between the two is such that the initial swarming
phase of the later colony occurs in the middle of the first consolidation phase of the earlier da)omiie gradient magnitude of the
swarmer densityu(x,y,t), att=43.5. At this time, the earligflower-left) colony is in the midswarming phase. This plot may indicate that
the two colonies have not even merged far behind the propagating fbprithe gradient magnitude of the swimmer densitgx,y,t), at
the same time as ifa). The discontinuity in the contours of the two colonies indicate that the two colonies have not merged at the periphery.

remain distinct but may merge deep in the colony interior. Itequation incorporating the eating of food by the all bacteria
would be nice to quantify the distinction between in and out(swimmers or swarmersand the diffusion of nutrients:
of phase. However, we lack a quantitative measure for
whether a given ring has merged. We therefore can only Nt= — NN (U+v) +Dpnyy. 4
produce pictures of predictions, rather than analytic predic-
tions for experiment. Here\ is a conversion factor from biomass density to nutri-
ent density,a . iS the maximal value of the MKK coeffi-
C. Model for branched rings cient a(v), and D, is a constant nutrient diffusivity. We
typically useN=1 or 3, an=0.7 (as in previous simula-
ons), andD,=D, (nutrient diffusivity coefficient equal to
e maximal swarmer diffusivijy
We motivate this nutrient evolution equation based on the

Rings have been observed in real biological systems t
coexist with branching colony envelopes, as in the branche
rings of Bacillus [4]. Here we introduce a model yielding

branching patterns in conjunction with rings generated by th%tandard MKK model by calculating the rate of change of the

MKK mechanism. We induce branching in the MKK model ; : . ;
by coupling the bacterial fields to a limited nutrient field, ato(}gl tggrgzs{iesrgﬂjn;ﬁ;igu:qigggnmse;rgxné?qzs- dengiye
technique used extensively in modeling branching bacteria‘?l ’

colonies[8-18]. We find that the correspondingly modified
MKK equations contain a Mullins-Sekerka instability.

The nutrient evolution equation we use is as follows: We
introduce a nutrient field density(x,y,t) with an evolution Wi(X,t) = a@(X,1))w(x,t) + (D(u,v)u(x,t))x. (5

w(x,t)=u(x,t)+uv(x,t),
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FIG. 11. (Continued.

That portion of this total biomass density change not due uy,(x,t)=vv(x,t)+(a— m)u(X,t)+ (D (U,v)uy(X,t))y,
to bacterial flux must be modulated by the nutrient field.
Therefore, we may incorporate the effect of the nutrient field (1) =(a—)v(x,t) + pu(xt),
into the MKK growth coefficiente(v): a(v)— a(v,n). To
date, the only nontrivial feature of this coefficient, an upper

swimmer density threshold, had the effect of limiting bacte- Ni(X,1) = = Nama(U+v) +DpNyy, (7)
rial growth. Now we want nutrient limitation to limit this

growth. We can therefore create a functiafin) to mimic B _

this effect. D(uv)= DOU+kU © (U~ Uthreshhold

Therefore, we replace the upper cutoffin the original

a(v) (pictured in Fig. 3 with a nutrient density modulation, ith o given by Eq.(6), and where we typically take
= Chutrient per biomas§rom that equation. Numerical integration
a(v)— a(n) = aoN Crutient per biomass 6 of these equations yield the desired branched ring patterns,

. ) as we illustrate in Fig. 12.
where Ciient per biomasdS @ constant conversion factor be-

tween the bacterial density fieldsandv and the nutrient
density fieldn.

To complete the specification of the modification to the We noted in Sec. Il A that the relative amplitude of the
model, we provide initial and boundary conditions for therings in our MKK simulations were only of the order of 1%,
nutrient fieldn(x,y,t). We choose as an initial condition a as shown in Fig. 8. It is unclear whether this order of mag-
homogeneous nutrient density (which we typically take to  nitude disagrees with experiment. Indeed, Raupeichl. [1]
be unity. We also impose hard walkero fluy boundary reported that, at least near the colony front, visually distinct
conditions at the edge of the plate. We implement the nubands of bacteria density differed only by a single bacterial
merical integration of the additiondhutrieny field with a  layer. If the bacterial densities in the colony interior are of
simple forward-time, centered spacing finite differencingthe order of 100 or more layers thick, which is not unreason-
schemg 19]. able, then the relative density fluctuations in our simulations

The resulting branched ring model is are practical.

D. Significance of ring amplitudes
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FIG. 12. (Color) Color maps illustrating branching ring patterns obtained from (g. Color plots of(a) the swarmer bacterial field
densityu(x,y,t), and(b) the corresponding logarithiibase 10 of the normalized magnitude of the gradient of the swarmer density at the
late timet=600 MKK time units. Note that the colony envelope illustrates both rings associated with the MKK mechanism and branches
associated with nutrient limitation. The color of the entire colony appears uniforfa) ibecause the relative amplitude of the bacterial
density at the colony front contains a peak.

If experiment shows that the relative density fluctuations The other method for increasing the density fluctuation
are significantly larger than 1%, however, then we mus@amplitudes associated with the rings is to add a weakened
identify a distinct method of obtaining such amplitudes. Weform of nutrient limitation. We found in Sec. Il C that nu-
identify two possible approaches: variation of our model patrient limitation yielded bacterial densities approaching zero
rameters and weak nutrient limitation. We consider each opetween the rings. As we turn this effect péfg.,\ — 0, with
these approaches in turn. a(n) a more steeply varying function ofto avoid bacterial

We suspect that varying our model parameters could progensity divergencds we expect rings of relatively larger
duce relatively larger bacterial density fluctuations at the loyensity fluctuations. This method may disagree with experi-
cation of the rings. This is so because we can vary our pament, however. If relatively large amplitude density fluctua-
rameters to obtain a short cycle periday increasinQUmresh  tions[O(1%)] are indeed observed in nutrient-rich environ-

and, we suspecf). The correspondingly smaller cycle pe- ments, this method would not apply.
riod would give the bacterial kinetics less time to reach their

equilibrium (consisting of constant values farandv), es- IV. SUMMARY

pecially in the consolidation region. We consider this the

more appropriate option, although we did not study the re- We have corrected the Medvedev-Kaper-Kopell model
gions of parameter space encompassing the correspondindiyr bacterial ring formation to include a swarmer density
relatively short periods. diffusivity threshold. Although this feature did not appear in
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FIG. 12. (Continued.

(the uncorrected version pthe analytic form of the MKK  with a swarmer density diffusivity threshglih two dimen-
model, it was crucial to the formation of rings in their results. sions. We demonstrated there that the resulting MKK model
This threshold was initially introduced as a cutoff for nu- continues to yield rings, and we demonstrated that those
merical stability, so its significance was unappreciated. rings contain a smooth, rather than a branched, interface. We
We further determined that this threshold determined thalso demonstrated the feasibility of the corrected MKK
swarm plus consolidation cycle. This is a possible explanamodel to simulate experimental observations of colliding
tion of the experimentally observed independence of thisolonies experiments, namely, the entrainment of colonies
cycle period on environmental growth conditions. We foundgrowth in phase, and the lack of such entrainment for colo-
that the logarithm of this swarmer density diffusivity thresh- nies grown out of phase. Finally, we extended the MKK
old was directly proportional to the swarm plus consolidationmodel to simulate the branched rings observedatillus
cycle. subtilisby coupling the swarmer and swimmer bacterial den-
We also identified a pair of quantities that remain constansities to a nutrient field.
during the entire swarm plus consolidation cycle. These are
the velocity of a “consolidation front”(which we defined,
and whose significance we first appreciatadd the expo-
nential decay rate of the swarmer to swimmer biomass den- Georgiy Medvedev graciously provided a copy of some of
sity ratio within a “consolidation region”(which we also his code integrating the MKK equations. Without this help,
defined, and whose significance we first apprecjatédese  we would probably have failed to reproduce any of the MKK
are the first constant behaviors of the system that have begasults. We are also indebted to S. Esipov and J. Shapiro and
identified during the entire swarm plus consolidation cycle. to G. Medvedev, T. Kaper, and N. Kopell for making avail-
We have also implemented the MKK modak corrected able preprints of their papers.
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