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Analytic model for ring pattern formation by bacterial swarmers

Scott Arouh
Physics Department, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0319

~Received 15 June 2000; published 27 February 2001!

We analyze a model proposed by Medvedev, Kaper, and Kopell~the MKK model! for ring formation in
two-dimensional bacterial colonies ofProteus mirabilis. We correct the model to formally include a feature
crucial of the ring generation mechanism: a bacterial density threshold to the nonlinear diffusivity of the MKK
model. We numerically integrate the model equations, and observe the logarithmic profiles of the bacterial
densities near the front. These lead us to define a consolidation front distinct from the colony radius. We find
that this consolidation front propagates outward toward the colony radius with a nearly constant velocity. We
then implement the corrected MKK equations in two dimensions and compare our results with biological
experiment. Our numerical results indicate that the two-dimensional corrected MKK model yields smooth
~rather than branched! rings, and that colliding colonies merge if grown in phase but not if grown out of phase.
We also introduce a model, based on coupling the MKK model to a nutrient field, for simulating experimen-
tally observed branched rings.

DOI: 10.1103/PhysRevE.63.031908 PACS number~s!: 87.18.Hf, 87.18.Ed, 87.18.Bb, 87.18.2h
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I. INTRODUCTION

Colonies of bacteria growing on a hard surface have b
observed to produce patterns of concentric rings. These r
form after inoculation of a bacterial culture in the center o
Petri dish containing nutrient-enriched agar, and allowing
bacteria to grow. Certain species of bacteria, such asProteus
mirabilis @1,2#, Vibrio parahaemolyticus@3#, and Bacillus
subtilis @4#, have been observed to form these terraced r
patterns during their colonial development under certain c
ditions. The challenge of modeling the formation of the
ring patterns has stood unsolved for over a century@2#.

These ring patterns form by way of a cyclic lifestyle
differentiation and dedifferentiation for the bacteria. Duri
one stage of this cycle, initially short, relatively nonmot
bacteria increase in numbers by reproduction without sign
cantly increasing the surface area of the colony. During
other stage of the cycle, some subset of the short bac
differentiate into relatively long swarmer cells. The
swarmers quickly increase the span of the colony by mig
ing outward from the colony edge as they grow. Once t
swarming phase is complete, the change in bacterial den
between the previous and newly occupied areas of the co
delineate a macroscopically observable boundary within
colony in the shape of the ring.

A number of biological observations are associated w
the phenomenon of bacterial ring formation. Primary amo
these is that the rings form in bursts of growth by the ra
spreading of differentiated bacteria calledswarmers, as illus-
trated in colony radius time series plots such as our sim
tion results of Fig. 1~b!. The bacteria of a species capable
swarming are initially in the form ofswimmers, relatively
short rods that swim with one or a few rotating arms cal
flagella. When the motion of their flagella is inhibited by th
presence of a highly viscous fluid or a hard substrate,
swimmers express an additional set of genes that inh
septation~separation of mother and daughter cells during c
division! and~at least inVibrio! codes for a structurally dis
tinct type of flagellum@3#. The result of this differentiation
1063-651X/2001/63~3!/031908~14!/$15.00 63 0319
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process is a longer~typically 30 times longer@3# in Vibrio
but only 1.5–2 times longer@4# in the branched rings o
Bacillus!, hyperflagellated cell, a swarmer. This process
illustrated in Fig. 2. Swarmer cells interact with each oth
much more so than swimmer cells. The flagella of adjac
swarmers become entangled, which locks both cells in
same orientation. In this way, groups of swarmers beco
linked together into rafts of bacteria, all with the same o
entation of their long axis: these rafts move as single un
Through an unidentified mechanism, these rafts of bact
expand the colony radius much more quickly than the co
posite motions of noninteracting swimmer cells. A prima
goal of modeling these ring patterns is to understand h
these swarmers use bacteria-bacteria interactions to m
much more quickly than the swimmers.

Recent progress in modeling these bacterial ring patte
has yielded a framework for further analysis. Esipov a
Shapiro recently proposed a kinetic model@5# incorporating
a number of biological observations of these systems
reproducing~in one dimension! the bursts of growth ob-
served experimentally. Their model explicitly incorporat
an age distribution as well as a spatial distribution of bac
ria. Although a dramatic improvement to the state ofProteus
ring modeling and a very interesting mechanism, the Esip
Shapiro model was inelegant and difficult to analyze. O
difficulty was that the form in which they incorporated e
perimental observations was not amenable to mathema
analysis. Most of these factors were incorporated into
functional form of a diffusivity. The resulting diffusivity
consisted of three experimentally motivated factors, inclu
ing the use of a threshold to an additional motility fiel
Furthermore, the increase in dimensionality of the syst
associated with the use of a bacterial age distribution h
dered simulation in the desired two spatial dimensions of
plate on which the bacteria grow.

Both of these problems were solved by Medvedev, Kap
and Kopell’s reformulation@6# of the Esipov-Shapiro model
They simplified the model to a system of two partial diffe
ential equations. They did this by averaging over the a
©2001 The American Physical Society08-1
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SCOTT AROUH PHYSICAL REVIEW E 63 031908
distribution of the Esipov-Shapiro model, and shifting t
biological details of that model away from the function
form of the diffusivity and into the functional forms of thre
separate kinetic coefficients. The result was a model that
only was more amenable to numerical simulation in two
mensions, but one for which closely related models could
analyzed mathematically.

A number of questions remained unanswered, howe
First of all, it remains to be explicitly shown that th
Medvedev-Kaper-Kopell~MKK ! model indeed produce
rings in two dimensions. Their analysis, as with Esipov a
Shapiro’s, was entirely one dimensional. Second, it would
interesting to see whether the MKK model reproduces
lack of entrainment of rings sometimes observed in collid
Proteuscolonies. Furthermore, a physical understanding

FIG. 1. Illustration of the effect on colony radius time series
varying the swarmer density diffusivity threshold. The swarm
density diffusivity thresholduthreshof the diffusivity expression~2!
is varied, and the colony radius time series plotted.~a! A large-
period swarm plus consolidation cycle, due to a relatively sm
uthresh510210 in Eq. ~2!. We use this value ofuthresh elsewhere
except where noted.~b! A smaller-period swarm plus consolidatio
cycle, due to a largeruthresh51022.
03190
ot
-
e

r.

d
e
e
g
s

desired of the emergence of a spike in the spatial profile
the diffusivity that MKK found numerically and identified
with the ring formation. It is not clear which of the biologica
details incorporated into the MKK model are required for t
ring formation. Although MKK analyzed closely relate
equations in which the biological details were taken out, th
stopped short of producing a final version of the model
which only the crucial experimental parameters were ke
Each of these issues prevent us from claiming that we un
stand the formation of bacterial colonial rings.

Review of Medvedev-Kaper-Kopell model

As described above, MKK reformulated the Esipo
Shapiro model by averaging over its swarmer age distri
tion. They maintain Esipov and Shapiro’s partitioning of t
bacteria into two subpopulations: a swimmer biomass d
sity, v(x,t), and a swarmer biomass density,u(x,t). The
resulting system of equations is as follows:

ut~x,t !5nv~x,t !1~a2m!u~x,t !1„D~u,v !ux~x,t !…x ,

v t~x,t !5~a2n!v~x,t !1mu~x,t !, ~1!

D~u,v !5D0

u

u1kv
.

The first of these equations gives the time rate of chang
the swarmer biomass density as the sum of an expone
growth term (au), the loss due to dedifferentiation o
swarmers to swimmers (2mu), and a diffusive flux to
model the movement of swarmers. We will explore the no
linear diffusivity they use below. The second of these eq
tions gives the corresponding time rate of change of the n
motile swimmer biomass density as the sum of
exponential growth term (av) corresponding to swimme
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r
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FIG. 2. Swarming life cycle. Cyclic differentiation
dedifferentiation life cycle of swarming bacteria. The rate consta
shown in the figure illustrate the biological significance of the c
responding terms in the MKK equations~1!. The bacteria are di-
vided into two subpopulations: swimmers@with a biomass density
v(x,t) and swarmers~with a biomass densityu(x,t))#. The swim-
mers divide once they double in size; the swarmers delay divis
until they grow in length. Each of these subpopulations grows w
an exponential growth ratea(v), modified by a differentiation of
the short to the long papulation density~with a ratenv) and a
dedifferentiation of the long to the short densities~with a ratemu).
The functional form of these rates is illustrated in Fig. 3.
8-2
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ANALYTIC MODEL FOR RING PATTERN FORMATION . . . PHYSICAL REVIEW E63 031908
cell division, a loss due to differentiation of swimmers
swarmers (2nv), and a gain due to dedifferentiation o
swarmers to swimmers (mu). With the third equation, MKK
took for the diffusivity a weighted fraction of biomass in th
swarmers, with the swimmers weighted with a factor ofk
.1 to account for the enhanced motility of the swarmers

This functional form for the nonlinear diffusivity is bio
logically reasonable. If we interpretk to be the average ratio
of long ~swarmer! to short~swimmer! bacterial lengths, the
given weighted fraction is the fraction of bacterial populati
members~i.e., entire cells! that are swarmers, rather than th
fractionu/(u1v) of biomass concentrated in swarmers. Th
functional form also has properties consistent with exp
ment. First, motility continues despite decreasing swarm
density during expansion. The form of the MKK diffusivit
accounts for this, in that it remains finite as swarmer den
~u! decreases. Second, the swarmer density does not dr
zero when swarming stops. This is again accounted for
the MKK diffusivity: this diffusivity can approach zero
~stopping swarming! with a finite swarmer density as long a
the ratio of swimmer to swarmer densities,v/u, diverges.
Finally, the swarming motility decreases with increasi
swimmer density. This is consistent with the fact that t
MKK diffusivity approaches zero for large swimmer dens
v.

The biological details that Esipov and Shapiro incorp
rated into the nonlinear diffusivity, MKK incorporated int
the functional forms of their rate coefficients. These are
total biomass growth ratea(v), the dedifferentiation rate
m(v) of swarmers back to swimmers, and the differentiat
raten(v) of swimmers to swarmers. These are illustrated
Fig. 3. The upper cutoffs on each of these coefficients w
intended to halt all bacterial growth above a maximal swi
mer densityṽ. This effect is in accordance with the expe
mental observation that bacterial growth saturates, no ma
how much food is present. However, we have shown e
where @7# that only the upper cutoff on the overall grow
rate,a(v), is required for this purpose; the upper cutoffs

FIG. 3. Cartoon illustration of the functional dependence of
rate coefficients in the Medvedev-Kaper-Kopell model. Each va
with swimmer densityv(x,t). To aid mathematical analysis, th
authors of Ref.@6# gave the transitions widths ofs. Each of these
rates drop to zero above an upper swimmer density thresholdṽ. In
addition, the differentiation raten(v) receives a lower cutoff ofṽ,
below which the differentiation rate goes to zero. In each case,
versions of the coefficients we used in our numerical integrati
below had the transition regions implemented with straight line s
ments: unless otherwise noted, we usedv̄512.0 andṽ516.0, in
accordance with the parameters used in Ref.@6#, and we choses
50.1. If ~a! The total biomass growth ratea(v). ~b! The dediffer-
entiation ratem(v), the rate at which swarmers dedifferentiate
swimmers. ~c! The differentiation raten(v), the rate at which
swimmers differentiate to swarmers.
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the other two coefficients do not alter the behavior of t
model.

In addition, the differentiation raten(v), the rate at which
swimmers differentiate to swarmers, has a lower cutoff ofv̄,
below which the differentiation rate goes to zero. This c
responds to an experimentally observed initial latency
swarmer cell production when a colony first starts growi
from an inoculum. Until the density of swimmers reaches
threshold, swarmers do not appear. In addition, the up
cutoffs, in combination with the lower cutoff on the differ
entiation rate, allow the swarmer density to approach z
through diffusion~without being replaced by newly forme
biomass!. This allows the diffusivity to approach zero an
thus slow the expansion of the colony.

MKK numerically integrated their equations@Eqs. ~1!#,

e
s

e
s
-

FIG. 4. Time series of representative values of the swarme
swimmer ratio,u/v. Representative values of the swarmer to swi
mer ratiou/v are plotted as a function of time, for the MKK mode
equation~1!, as amended by Eq.~2!, with the same parameters a
reported above. Plotted are logarithmic~base 10! values of the
maximum, median, and minimum values of the swarmer to sw
mer ratio,u/v, within the consolidation region. For this purpos
the consolidation region is approximated as that region betwee
inner radius, whereu5uconsol, and an outer radius, whereu
5uthresh. It can be seen that the differences between the maxim
median, and minimum values of the ratiou/v at any given time are
insignificant compared to the differences in these values introdu
by time evolution. As a result, the time series of log10(u/v) values
takes the form of a well-defined sawtooth curve, with nearly ve
cal linear rises and relatively shallow linear declines. These lin
rises and falls on this log plot correspond to exponential increa
and decreases of theu/v ratio itself. The fast upward rise occur
during the same time interval as the swarming phase, and the
tively slow downward fall occurs during the same time interval
the consolidation phase. It should be noted that this plot shows
the ratiou/v is small~!1! during consolidation, in agreement wit
the mid-consolidation phase snapshot of the profiles shown in F
7~b! and 7~c!. We have analytically calculated@7# the slope of the
downward segments of this plot and found it to be2m/ ln 0, which
agrees with the plots presented here.
8-3
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SCOTT AROUH PHYSICAL REVIEW E 63 031908
FIG. 5. Time series of the radii of the entire colony and of the consolidation front. These are results from numerical integratio
MKK equations~1!, as amended by Eq. 2. Parameters used wereD0525,a50.7,m5n50.6,k55, v̄512, ṽ516, anduthresh510210. Error
bars are are not presented, as the radius is determined as the lattice site where the averaged radial profile dips below some thr
initial condition we use in this and other figures we borrow from the code of MKK. The swimmer and swarmer densities are constan
a radius of five lattice units of the colony center, and zero otherwise. The swimmer density is set to a value of 11.5 within this reg
the swarmer density to 9.0. Although this differs from biologically relevant initial conditions, in which the swarmers start at zero
where, numerical results~data not shown! indicate that the colony radius does not increase significantly until the swarmer density is bu
~a! The colony front is defined as the spatial location at which the swarmer (u) profile first dips belowuthresh510210. Note that growth of
the colony front occurs in bursts, in agreement with both experimental and previous numerical results.~b! The consolidation front is defined
~somewhat arbitrarily! as the spatial location at which the swarmer (u) profile first dips below the threshold ofuconsol51021. This value was
chosen because it was near the inner edge of the exponentially decaying part of the swarmer density distribution of Fig. 7~b!. The focus of
attention is not the series of bumps in this plot, but rather the linearity of the majority of the plot. These linear segments indic
consolidation front propagation occurs at a constant velocity. The slope of the linear portions of this curve~that is, the observed consolidatio
front velocity! is approximately 1.9360.05 lattice units per MKK time unit.~c! The same consolidation front time series as in~b!, but with
a largeruconsol51.0. The deviations from linearity that appeared in~b! are barely recognizable, indicating that the consolidation front app
to propagate linearly with time even during swarming.
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and identified a significant physical insight to the mechan
of ring formation. The striking thing they found was th
presence of a spike in the profile of the diffusivity th
formed at the colony front just before the swarming pha
began. According to Eq.~1!, this implies a spike in swarme
cell density just before swarming starts. In support of th
Rauprichet al. @1# observed that the leading edges of swar
ing Proteuscolonies were composed of populations four
03190
e

,
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five cells thick, whereas just behind the growing front, t
population was only a single cell thick. MKK also produce
a colony radius vs time plot demonstrating that their mo
yielded growth that was not just cyclic, but indeed occurr
in bursts. With the MKK model in hand, we are ready
explore some of the issues we raised in Sec. I: rings in
dimensions, entrainment of colliding rings, identification
crucial biological details.
8-4
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ANALYTIC MODEL FOR RING PATTERN FORMATION . . . PHYSICAL REVIEW E63 031908
II. NUMERICAL STUDIES OF MKK MODEL

A. Correcting the MKK model

We first reproduced the numerical observations of MK
similar to our Fig. 1~b!. We determined that they used
significant but undocumented modification to the analy
model they presented: they implemented a lower thresh
on the swarmer density, below which they set it to zero.
determined that this threshold was crucial to the ring gen
tion mechanism.

This swarmer density diffusivity threshold is biological
reasonable: it accounts for the physical discreteness of
distinct bacteria. If the swarmer density goes below so
level corresponding to a single bacterial layer, for examp
the corresponding decrease in bacteria-bacteria interac
would reduce the enhanced motility due to bacterial
tanglement. It is thus a valid biological feature that t
swarmer density diffusivity should approach zero for as
swarmer density approaches some finite but small thres
value from above.

We use an alternating-direction-implicit method in co
junction with a forward-time, centered spacing technique
finite differencing in our numerical integration of the MKK
equations. In Fig. 4 we present our numerical results for
time evolution of the swarmer to swimmer ratiou/v in the
region near the front~whereu andv approach zero!. We see
there that the ratiou/v in the consolidation region decay
exponentially~with a decay ratem @7#! for the entire duration
of the consolidation phase. This observation provides a qu
titative constant to the behavior of the swarm-consolidat
cycle ~see Fig. 1!.

The largeu/v ratio observed in Fig. 4 during swarmin
can be understood as follows. Recall that the swarmers~u!
are motile, while the swimmers (v) are immotile and mus
wait for the swarmers to populate an area before the sw
mer density can build up. During the swarming phase, i
before the swimmer (v) density has caught up to th
swarmer (u) density in newly populated areas, the ratiou/v
is therefore large. Equation~9! then indicates that, very nea
the front ~i.e., as bothu and v approach zero!, D(u,v)
→D0(u/e)→0 rather than the correct form ofD(u,v)
→D0(u/u)5D0 . The specific form in which MKK handled
this limit of the expression for the diffusivity thus has th
heretofore undocumented effect of artificially decreasing
diffusivity to zero ~rather than toD0) near the front.

We found that this detail was crucial to the abrupt bur
of growth shown in Fig. 1~b!. We therefore explicitly build it
into the model with the following expression for the diffu
sivity, in which diffusivity is explicitly set to zero when the
swarmer~u! density falls below some thresholduthresh:

D~u,v !5D0

u

u1kv
Q~u2uthresh!. ~2!

We will see below that the value of this threshold,uthresh,
directly controls the period of the swarm plus consolidat
cycle. We proceed using the corrected MKK model, cons
ing of Eqs.~1! as modified by Eq.~2!.
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B. Effect of the swarmer density diffusivity threshold

We illustrate in Figs. 1 and 6 the effect of varying th
swarmer density thresholduthreshof the diffusivity expression
in Eq. ~2!. In Fig. 5 we see the qualitative effect on th
colony radius time series of increasing the swarmer den
diffusivity thresholduthreshseveral orders of magnitude. W
examine the effects ofuthresh in terms of ring period and
width. A ring here refers to that part of colony growth th
occurs during a swarm plus consolidation cycle.Ring period
refers to the amount of time between the abrupt initiations

FIG. 6. Illustration of exponential decay of ring period an
width with the swarmer density diffusivity threshold. The swarm
density diffusivity thresholduthresh of the diffusivity expression in
Eq. ~2! is varied, and the corresponding~average! ring period and
width is observed. Shown are~a! the ring period, and~b! the ring
width, both as functions of log10(uthresh). For both of these plots, it
can be seen that, consistent with the rings illustrated in the col
radius time series plots of Fig. 1, the ring period and width b
decrease exponentially with the swarmer density diffusivity thre
old.
8-5
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FIG. 7. Illustration of the exponential decay of bacterial densities in the consolidation region in the MKK model. Shown a
exponential decay of bacterial densities resulting from the MKK model@Eq. ~1!# as amended by the second equation below@for ~~a! and~b!!#
and Eq.~2! @for ~c!#. Shown are logarithmic~base 10! plots of swarmer (u) and swimmer (v) density profiles and@in ~c!# their ratio in
midconsolidation phase. In~c!, the region~near the origin! over which theu/v ratio undergoes a steep decay propagates outward du
consolidation until it reaches the corresponding peak at the colony radius: this leads to formation of the diffusivity spike observed in@6#,
and the induction of swarming. In each figure, error bars are based on scatter in the plotted quantities and are below the resolution
MKK implemented the nonlinear diffusivity in their model through the combinations

D~u,v!5D0

u

u1kv1e
, u5uQ~u2uthresh!,

with e a small constant,e510211. For ~a! and ~b!, we implement a slight variant of these modifications

D~u,v!5D0

u

u1kv1e
Q~u2uthresh!.

Parameters used wereD0525, a50.7, m5n50.6, k55, v̄512, ṽ516, anduthresh510210. ~a! The full profiles: the top curve is the
swimmer (v) density; the lower curve is the swarmer (u) density. We maintain the full profile in our code, rather than just thex>0 region,
in anticipation of integrating the corrected MKK equations in two dimensions.~b! The profiles near the front, in what we call th
consolidation region. Note that the spatial decay rates of both swimmers and swarmers are the same within much of the consolidat
~c! The ratio of the profiles near the front. The steep increase in~the logarithm of! this value at the colony front remains at the front duri
consolidation, and underlies the small precursors to the diffusivity spike observed by MKK. This precursor remains stationary at
while the consolidation front propagates outward. When the consolidation front catches up to the colony front, the previously o
diffusivity spike appears, and initiates a new swarming phase. Note that in this midconsolidation phase snapshot of the ratio profile,
of the ratio is!1 throughout the consolidation region.
031908-6
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ANALYTIC MODEL FOR RING PATTERN FORMATION . . . PHYSICAL REVIEW E63 031908
growth defining the start of the swarming phases at the
ginning of the current and the succeeding ring. Similar
ring width refers to the distance between the colony radiu
these two times. With this terminology, Fig. 1 demonstra
the qualitative observation that ring period and ring wid
both decrease with an increase inuthresh.

In Fig. 6, we quantify this decrease of ring perio
and width with increases inuthresh. There we plot ring period
and ring width as a function of log10(uthresh). We see
that ring period and width both decrease exponentia
with the swarmer density diffusivity threshold. This ca
be interpreted in terms of observations we have made ab

C. Effect of kinetic coefficient cutoffs

The upper thresholdsṽ on the differentiation raten(v),
the dedifferentiation ratem(v), and the growth ratea(v),
collectively serve to prevent the bacterial densities from
creasing without bound. As a simplification, we verified th
we could achieve the same effect with the upper thresh
only on the growth rate,a(v). For consistency, however, w
do not use this simplification throughout.

D. Observation of rings in the colony interior

If the MKK model is to be used to model experimenta
observed bacterial rings, it must yield not only the bursts
growth illustrated in Fig. 1~b!, but also latent effects of thos
bursts of growth in the form of rings in the bacterial dens
profiles within the colony, away from the front. Plots illu
trating the amplitude of the rings in the radial bacterial de
sity distribution relative to the background bacterial dens
do not appear to be available in the literature. This is pr
ably because experimenters view the rings by scattering l
off the colony. This technique certainly locates the posit
of the rings, but it does not yield an estimate of their relat
bacterial density from the height of the rings above
colony surface. However, microscopic observations~by Rau-
prich et al., for example@1#! indicate that, at least near th
colony edge, the bacterial densities are so small that the
proximation of bacterial dynamics near the edge with c
tinuous differential equations is questionable. For exam
they observe 4–5 bacterial layers at the propagating fr
and only a single layer just inside the front. We have n
found published data indicating the corresponding numbe
bacterial layers at the location of the rings far from t
colony edge.

Despite this lack of quantitative biological experimen
data, we can still look for the presence in the MKK model
any rings at all left in the bacterial distribution far from th
colony front. Figure 7~a! shows that if there are any suc
rings left in the profile, they are not large compared to
background density. This leads us to search harder for
evidence of rings in the profiles.

In Fig. 9, we make a color plot of the two-dimension
swarmer bacterial density distribution resulting from the c
rected MKK equations in two dimensions. The rings evide
there in the colony interior allow us to use the MKK mod
to probe two-dimensional experimental observations of
rings, such those of colliding colonies and of branched rin
03190
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III. EXTENSION OF MKK TO TWO DIMENSIONS

Recall that one of our original goals was to model t
two-dimensional~2D! ring patterns observed in the real ba
terial systems. To this end, we now run two-dimensio

FIG. 8. Macroscopic remnants in the bacterial density profiles
the bursts of growth associated with swarming. Density profiles
plotted on a linear scale for the interior of the colony, which i
cludes the entire colony except for the consolidation region: th
plots thus include the entire domain of the colony. Parameters u
were as in previous figures. The features in these plots illustrate
relatively small details in the structure of these profiles. The profi
are plotted at the same midconsolidation phase time at which
vious profile plots were made.~a! The swarmer density profile
within the colony interior. Note the presence of a small peak@with
relative magnitudedu/u5O(1022)# in the regionx580– 120 lat-
tice spacings corresponding to the burst of growth that at roug
t545 MKK time units that appears in Fig. 5~a!. ~b! The swimmer
density profile within the colony interior. Note that this profile
constant in the interior; this constant is the upper threshold,ṽ, on
on the MKK coefficients~illustrated in Fig. 3!.
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FIG. 9. ~Color! Color map illustrating the magnitude of the swarmer bacterial density gradient. A color plot of the logarithm~base 10!
of the magnitude of the bacterial density gradient, normalized to the local densityh of Eq. 3. The results presented here correspond t
simulation run with swarmer diffusivity thresholduthresh51022. Note that the colony perimeter is smooth, not branched. Note also tha
rings in this figure correspond to local extrema of the respective bacterial densities: they are where the peaks and troughs are in th
distribution, rather than where the edges of the rings are.
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versions of our simulation to determine whether rings
still formed and to determine whether the MKK model pr
duces branching patterns in two dimensions.

We plot the magnitude of the gradient of the bacter
densities to view the ring remnants on the colony interi
Because the rings only leave relatively small artifacts in
bacterial densities on the interior of the colony~as in Sec.
II D !, we cannot view these features directly with a conto
map of the bacterial density. We therefore calculate
above mentioned gradient magnitude, normalize it to the
cal bacterial density, and plot its logarithm~base 10!. We
illustrate typical results of this technique in Figs. 11~a! and
11~b!.

A. Visualizing the 2D structure of the rings

We first verify ~results not shown! that the MKK model
produces the same type of ring formation we found in
one dimensional version of the simulation. The colony fro
radius continues to propagate outward in bursts, a conso
tion front still exists and propagates outward linearly exc
at the onset of swarming, and the swarmer to swimmer d
03190
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sity ratio in the consolidation front decreases exponentia
except during the onset of swarming.

Now that we know the MKK model produces rings in tw
dimensions, the next question is, what do these rings l
like? Although the~root mean squared! colony radius~as
defined with a swarmer thresholduthresh) expand outward in
bursts of swarming and consolidation, what is the shape
the propagating front? Is it smooth, corresponding to the p
terns observed inProteus, or branched, corresponding t
those observed inBacillus?

To answer these questions, we need a method of view
the full, two dimensional bacterial density distributions in t
simulated colonies. Figure 8 illustrates that, at least for
simulation parameters we are using, the relative amplitud
the rings left in the colony interior is only of the order of 1%
of the peak amplitude.~We will discuss this quantity later, in
Sec. III D.! A simple contour plot would therefore fail to
illustrate the ring remnants on the colony interior.

We therefore implement a different method of visualizi
the ring remnants. We calculate the radial gradient of
bacterial densities: the spatial gradient in the direction ra
ally outward from the colony center. We then normalize
the local field value. Finally, we plot the resulting quantit
8-8
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FIG. 10. ~Color! Color map illustrating the magnitude of the gradient of the swarmer bacterial density for two ring colonies gro
phase. A color plot of the logarithm~base 10! of the magnitude of the gradient of the swarmer bacterial density, as in Fig. 9. The
colonies are grown in phase: both the bottom-left and bottom-right colonies start growing att50. The initial conditions of each of thes
colonies are identical: they each start in the midswarming phase. The gradient magnitude of the swarmer density is shown att585.0. This
plot demonstrates that the two colonies have merged both at the periphery and deep in the colony interior.
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with a color scale. We note from the two-dimensional sim
lation with results in Fig. 9 that the rings are smooth rath
than branched.

B. Experiments with colliding colonies

The next question we address is, do the rings from t
separate colonies merge or remain distinct? Biological ob
vations indicate that the rings merge if the colonies are
phase@i.e., both in the same growth phase~swarming or
consolidation!#, and that they remain distinct if the colonie
are out of phase.

Here we simulate two colonies with their growth phas
either in phase or out of phase. We grow one colony in
bottom-left corner of the simulation region, and one in t
bottom-right corner. These colonial positions allow us
produce pictures of colliding colonies computationally ef
ciently.
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For an in-phase diagram, we initiate growth in the tw
colonies at the same time and with the same initial con
tions. For an out-of-phase diagram, we initiate the growth
the bottom-left colony in the midswarming phase, and
initiate that in the bottom-right colony in the same mi
swarming state only after the first colony has entered m
consolidation phase.~We typically initiated the second
colony att57.5 MKK time units.! We illustrate the result of
the in-phase experiment in Fig. 10, and that for the out-
phase experiment in Fig. 11.

We see in the case for which the colonies are grown
phase~Fig. 11!, that the two colonies have clearly merge
both at the periphery and far behind the propagating fro
This is consistent with the experimental observation that
phase colonies merge, a process called entrainment.

On the other hand, we see, in the out-of-phase case,~Fig.
10!, that the two colonies have clearly not merged at
periphery, and we see less clearly that they do not appea
have merged far behind the propagating front. This is c
sistent with the experimental observation that out-of-ph
colonies do not merge.

It thus appears that the MKK model predicts that ri
colonies grown in phase merge and those grown out of ph
8-9
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FIG. 11. ~Color! Color map illustrating the magnitude of the gradient of the bacterial densities for two ring colonies grown out of
A color plot of the logarithm~base 10! of the magnitude of the gradient of the bacterial densities, as in Fig. 9. The two colonies are
out of phase: in each figure, the bottom-left colony starts growing att50, and the bottom-right one att57.5. The initial conditions of each
of these colonies are identical: they each start in the midswarming phase. The time delay between the two is such that the initial
phase of the later colony occurs in the middle of the first consolidation phase of the earlier colony.~a! The gradient magnitude of the
swarmer density,u(x,y,t), at t543.5. At this time, the earlier~lower-left! colony is in the midswarming phase. This plot may indicate t
the two colonies have not even merged far behind the propagating front.~b! The gradient magnitude of the swimmer density,v(x,y,t), at
the same time as in~a!. The discontinuity in the contours of the two colonies indicate that the two colonies have not merged at the pe
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remain distinct but may merge deep in the colony interior
would be nice to quantify the distinction between in and o
of phase. However, we lack a quantitative measure
whether a given ring has merged. We therefore can o
produce pictures of predictions, rather than analytic pred
tions for experiment.

C. Model for branched rings

Rings have been observed in real biological systems
coexist with branching colony envelopes, as in the branc
rings of Bacillus @4#. Here we introduce a model yieldin
branching patterns in conjunction with rings generated by
MKK mechanism. We induce branching in the MKK mod
by coupling the bacterial fields to a limited nutrient field,
technique used extensively in modeling branching bacte
colonies@8–18#. We find that the correspondingly modifie
MKK equations contain a Mullins-Sekerka instability.

The nutrient evolution equation we use is as follows: W
introduce a nutrient field densityn(x,y,t) with an evolution
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equation incorporating the eating of food by the all bacte
~swimmers or swarmers! and the diffusion of nutrients:

nt52lamaxn~u1v !1Dnnxx . ~4!

Herel is a conversion factor from biomass density to nut
ent density,amax is the maximal value of the MKK coeffi-
cient a(v), and Dn is a constant nutrient diffusivity. We
typically usel51 or 3, amax50.7 ~as in previous simula-
tions!, andDn5D0 ~nutrient diffusivity coefficient equal to
the maximal swarmer diffusivity!.

We motivate this nutrient evolution equation based on
standard MKK model by calculating the rate of change of
total biomass~swarmer plus swimmer biomass density!. We
add the bacterial density equations from Eqs.~1!:

w~x,t ![u~x,t !1v~x,t !,

wt~x,t !5a„v~x,t !…w~x,t !1„D~u,v !ux~x,t !…x . ~5!
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FIG. 11. ~Continued!.
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That portion of this total biomass density change not d
to bacterial flux must be modulated by the nutrient fie
Therefore, we may incorporate the effect of the nutrient fi
into the MKK growth coefficienta(v):a(v)→a(v,n). To
date, the only nontrivial feature of this coefficient, an upp
swimmer density threshold, had the effect of limiting bac
rial growth. Now we want nutrient limitation to limit this
growth. We can therefore create a functiona(n) to mimic
this effect.

Therefore, we replace the upper cutoffṽ in the original
a(v) ~pictured in Fig. 3! with a nutrient density modulation

a~v !→a~n!5a0nCnutrient per biomass, ~6!

where Cnutrient per biomassis a constant conversion factor b
tween the bacterial density fieldsu and v and the nutrient
density fieldn.

To complete the specification of the modification to t
model, we provide initial and boundary conditions for t
nutrient fieldn(x,y,t). We choose as an initial condition
homogeneous nutrient densityn0 ~which we typically take to
be unity!. We also impose hard wall~zero flux! boundary
conditions at the edge of the plate. We implement the
merical integration of the additional~nutrient! field with a
simple forward-time, centered spacing finite differenci
scheme@19#.

The resulting branched ring model is
03190
e
.
d

r
-

-

ut~x,t !5nv~x,t !1~a2m!u~x,t !1„D~u,v !ux~x,t !…x ,

v t~x,t !5~a2n!v~x,t !1mu~x,t !,

nt~x,t !52lamaxn~u1v !1Dnnxx , ~7!

D~u,v !5D0

u

u1kv
Q~u2uthreshhold!,

with a given by Eq. ~6!, and where we typically takel
5Cnutrient per biomassfrom that equation. Numerical integratio
of these equations yield the desired branched ring patte
as we illustrate in Fig. 12.

D. Significance of ring amplitudes

We noted in Sec. III A that the relative amplitude of th
rings in our MKK simulations were only of the order of 1%
as shown in Fig. 8. It is unclear whether this order of ma
nitude disagrees with experiment. Indeed, Rauprichet al. @1#
reported that, at least near the colony front, visually disti
bands of bacteria density differed only by a single bacte
layer. If the bacterial densities in the colony interior are
the order of 100 or more layers thick, which is not unreas
able, then the relative density fluctuations in our simulatio
are practical.
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FIG. 12. ~Color! Color maps illustrating branching ring patterns obtained from Eq.~7!. Color plots of~a! the swarmer bacterial field
densityu(x,y,t), and~b! the corresponding logarithm~base 10! of the normalized magnitude of the gradient of the swarmer density a
late timet5600 MKK time units. Note that the colony envelope illustrates both rings associated with the MKK mechanism and br
associated with nutrient limitation. The color of the entire colony appears uniform in~a! because the relative amplitude of the bacter
density at the colony front contains a peak.
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If experiment shows that the relative density fluctuatio
are significantly larger than 1%, however, then we m
identify a distinct method of obtaining such amplitudes. W
identify two possible approaches: variation of our model
rameters and weak nutrient limitation. We consider each
these approaches in turn.

We suspect that varying our model parameters could p
duce relatively larger bacterial density fluctuations at the
cation of the rings. This is so because we can vary our
rameters to obtain a short cycle period~by increasinguthresh
and, we suspect,m!. The correspondingly smaller cycle pe
riod would give the bacterial kinetics less time to reach th
equilibrium ~consisting of constant values foru andv), es-
pecially in the consolidation region. We consider this t
more appropriate option, although we did not study the
gions of parameter space encompassing the correspond
relatively short periods.
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The other method for increasing the density fluctuat
amplitudes associated with the rings is to add a weake
form of nutrient limitation. We found in Sec. III C that nu
trient limitation yielded bacterial densities approaching ze
between the rings. As we turn this effect off@e.g.,l→0, with
a(n) a more steeply varying function ofn to avoid bacterial
density divergences#, we expect rings of relatively large
density fluctuations. This method may disagree with exp
ment, however. If relatively large amplitude density fluctu
tions @O(1%)# are indeed observed in nutrient-rich enviro
ments, this method would not apply.

IV. SUMMARY

We have corrected the Medvedev-Kaper-Kopell mo
for bacterial ring formation to include a swarmer dens
diffusivity threshold. Although this feature did not appear
8-12
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FIG. 12. ~Continued!.
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~the uncorrected version of! the analytic form of the MKK
model, it was crucial to the formation of rings in their resul
This threshold was initially introduced as a cutoff for n
merical stability, so its significance was unappreciated.

We further determined that this threshold determined
swarm plus consolidation cycle. This is a possible expla
tion of the experimentally observed independence of
cycle period on environmental growth conditions. We fou
that the logarithm of this swarmer density diffusivity thres
old was directly proportional to the swarm plus consolidat
cycle.

We also identified a pair of quantities that remain const
during the entire swarm plus consolidation cycle. These
the velocity of a ‘‘consolidation front’’~which we defined,
and whose significance we first appreciated! and the expo-
nential decay rate of the swarmer to swimmer biomass d
sity ratio within a ‘‘consolidation region’’~which we also
defined, and whose significance we first appreciated!. These
are the first constant behaviors of the system that have b
identified during the entire swarm plus consolidation cyc

We have also implemented the MKK model~as corrected
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with a swarmer density diffusivity threshold! in two dimen-
sions. We demonstrated there that the resulting MKK mo
continues to yield rings, and we demonstrated that th
rings contain a smooth, rather than a branched, interface.
also demonstrated the feasibility of the corrected MK
model to simulate experimental observations of collidi
colonies experiments, namely, the entrainment of colon
growth in phase, and the lack of such entrainment for co
nies grown out of phase. Finally, we extended the MK
model to simulate the branched rings observed inBacillus
subtilisby coupling the swarmer and swimmer bacterial de
sities to a nutrient field.
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@4# I. Ràfols, M. Sc. thesis, Chuo University, Japan, 1998.
@5# S. Esipov and J. Shapiro~unpublished!.
@6# G. Medvedev, T. Kaper, and N. Kopell~unpublished!.
@7# Scott Arouh, Ph.D. thesis, University of California, San Dieg

2000.
@8# E. Ben-Jacob, H. Shmueli, O. Shochet, and A. Tenenba

Physica A187, 378 ~1992!.
@9# E. Ben-Jacob, Contemp. Phys.38, 205 ~1997!.

@10# I. Golding, Y. Kozlovsky, I. Cohen, and E. Ben-Jacob, Phys
A 260, 510 ~1998!.

@11# K. Kawasaki, A. Mochizuki, T. Matsushita, T. Umeda, and
03190
,

,

,

Shigesada, J. Theor. Biol.188, 177 ~1997!.
@12# S. Kitsunezaki, J. Phys. Soc. Jpn.66, 1554~1997!.
@13# D. Kessler and H. Levine, Nature~London! 394, 556 ~1998!.
@14# H. Fujikawa and M. Matsushita, J. Phys. Soc. Jpn.60, 88

~1991!.
@15# M. Matsushita, J. Wakita, H. Itoh, I. Ra`fols, T. Matsuyama, H.

Sakaguchi, and M. Mimura, Physica A249, 1 ~1998!; 249, 517
~1998!.

@16# M. Mimura, H. Sakaguchi, and M. Matsushita~unpublished!.
@17# M. Mimura, H. Sakaguchi, and M. Matsushita~unpublished!.
@18# M. Matsushita, J. Wakita, H. Itoh, I. Rafols, T. Matsuyama,

Sakaguchi, and M. Mimura, Physica A249, 517 ~1998!.
@19# W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,Nu-

merical Recipes in C: The Art of Scientific Computing, 2nd ed.
~Cambridge University Press, Cambridge, 1994!, Chap. 19.
8-14


